中查找“频率与概率 教案设计”更多相关内容
中查找“频率与概率 教案设计”更多相关内容
- ·上一篇文章:反比例函数的应用 教案设计
- ·下一篇文章:投针实验 教案设计
频率与概率 教案设计
我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.同样
的我们也可以通过实验活动.估计较复杂事件的概率.
Ⅱ.分组实验,进一步理解当实验次数较大时,实验频率稳定于理论概率.
1.活动一:
通过摸牌活动,探索出“实验次数很大时,实验的频率渐趋稳定”这一规律.
活动方式:分组实验,全班合作交流.
活动步骤:准备两组相同的牌,每组两张。两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次实验.
(1)估计一次实验中。两张牌的牌面数字和可能有哪些值?
(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:
(3)根据上表,制作相应的频数分布直方图.
(4)根据频数分布直方图.估计哪种情况的频率最大?
(5)计算两张牌的牌面数字和等于3的频率是多少?
(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表.并绘制相应的折线统计图.
(在具体实验活动的展开过程中.要力图体现各个步骤的渐次递进.(1)在一次实验中,两张牌的牌面数字和可能为2,3,4:(2)学生根据自己的实验结果如实填写实验数据;(3)制作相应的频数分布直方图,一方面为了复习巩固八年级下册有关频数、频率的知识,同时也便于学生更为直观地获得(4)的结论;(4)一般而言,学生通过实验以及上面(2)(3)的图表容易猜想两张牌的牌面数字和为3的频率最大.理论上.两张牌的牌面数字和为2,3,4的概率依次为,应该说,经过30次实验,学生基本能够猜想两张牌的牌面数字和为3的频率最大.当然,这里一定要保证实验的次数,如果实验次数太少,结论可能会有较大出入;(5)有了(4)中的结沦.自然过渡到研究其频率的大小.当然,两张牌的牌面数字和等于3的频率因各组实验结果而异.正是有了学生结论的差异性,才顺理成章地展开问题