五年级奥数解析(二十七)还原问题

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-12-29 22:16:00

《奥赛天天练》第十九讲《还原问题》,还原问题在四年级奥数课堂已经作了比较具体的介绍,请查阅:

四年级奥数解析(四十六)还原与倒推

本讲将在四年级的基础上进一步学习较复杂的还原问题,熟悉还原法解题的基本思路和解题策略。学会借助图示和列表的方法,整理信息,理清题目中的数量关系,逐步倒行推理,解决问题。

《奥赛天天练》第19讲,模仿训练,练习1

【题目】:

服装店卖一种服装,看看难以售出,就按原定价打对折(原价的一半)销售,生意火红起来,又悄悄地每套加价14.5元出售,见顾客买的少了,又降价2.5元,按现价96.4元出售,当初定价时又比进价贵40.5元,问这种服装进货价每套多少元?

【解析】:

这一题只涉及到一种服装的价格即一个数量的变化,可以按照价格变化的时间顺序整理信息,画出下面的示意图,再根据示意图,逐步倒退,算出进货价。


 

所以这种服装的进货价为:

(96.4+2.5-14.5)×2-40.5=128.3(元)。

《奥赛天天练》第19讲,模仿训练,练习2

【题目】:

有甲、乙两堆小球,各有若干个,先从甲堆拿出和乙堆同样多的小球放到乙堆,再从乙堆拿出和这时甲堆同样多的小球放到甲堆。这时甲、乙两堆都有小球16个,问甲、乙两堆最初各有小球多少个?

【解析】:

“从乙堆拿出和这时甲堆同样多的小球放到甲堆”之后,甲堆球是原来的2倍,还原,则甲堆原有球是现在的一半,乙堆原有球数就是现有球数加上甲堆现有球的一半。

这一题涉及到甲堆球个数、乙堆球个数,两个数量的变化情况。可以按以下格式摘录信息,逐步推理:

从最后甲乙两堆各16个球出发,但变化的先后顺序倒推:

先求出第二次变化“从乙堆拿出和这时甲堆同样多的小球放到甲堆”之前,甲堆的球数为:16÷2=8(个),乙堆的球数为16+8=24(个);

第二次变化之前,就是第一次变化之后。再求出第一次变化“从甲堆拿出和乙堆同样多的小球放到乙堆”之前,即最初乙堆的球数为:24÷2=12(个),最初甲堆的球数为:8+12=20(个)。

《奥赛天天练》第19讲,巩固训练,习题1

【题目】:

小明、小刚、小英、小敏共有贺卡80张,小明给小刚2张,小刚给小英5张,小英给小敏6张,小敏给小明8张,这时4人贺卡张数相同,原来他们各有几张贺卡?

【解析】:

先求出最后每个人拥有贺卡张数:80÷4=20(张)。

再整理条件,找出每个人的贺卡数量变化情况,并根据贺卡增减情况,还原出每个人原有贺卡张数:

小明:小明给小刚2张、小敏给小明8张

所以小明原有贺卡:20-8+2=14(张)。

小刚:小明给小刚2张、小刚给小英5张

所以小刚原有贺卡:20+5-2=23(张)。

小英:小刚给小英5张、小英给小敏6张

所以小英原有贺卡:20-5+6=21(张)。

小敏:小英给小敏6张、小敏给小明8张

所以小敏原有贺卡:20-6+8=22(张)。

《奥赛天天练》第19讲,巩固训练,习题2

【题目】:                                           

甲、乙、丙各有棋子若干个,甲先给乙、丙一些棋子,使乙、丙每人的棋子数各增加一倍;然后乙也把一些棋子给甲、丙,使甲、丙每人的棋子数各增加一倍;最后丙也按甲和乙的棋子数分别给甲、乙一些棋子,此时三人都各有8枚棋子。开始时甲、乙、丙各有多少个棋子?

【解析】:

题中甲、乙、丙三人的棋子数分别经过了3次变化后,最后每人的棋子数都是8枚。从最后每人8枚棋子出发,按照棋子数变化顺序由后到前倒推还原,依次求出每次变化前棋子数量,最后求出第一次变化前三人各自的棋子数,即最初开始时每人拥有的棋子数。推理过程列表如下:

 

所以开始时甲有13枚棋子,乙有7枚棋子,丙有4枚棋子。

《奥赛天天练》第19讲,拓展提高,习题1

【题目】:

有一排较长队伍的人作一、二、三报数,报一、二的出去,报三的留下,如此经过4次,留下10人,问留下的第1人与第10人在原队伍中各是第几人?

【解析】:

解法一:按4次报数由后到前的顺序倒推。按每3人一组,最后留下的第1人在第四次报数时,是第一组的第3人,即整个队伍的第3人;最后留下的第10人在第四次报数时,是第10组的第3人,即整个队伍的第30人。依次类推,倒推过程列表如下:


    第一次报数时二人的位置即二人在原队伍中的位置,所以最后留下的第1人在原队伍中是第81人,最后留下的第10人在原队伍中是第810人。

解法二:先按顺序给队伍中每个人编上号码如下:

1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、……

按题目要求划去在报数中出去的人,第1次报数后留下的人为:

3、6、9、12、15、18、21、24、27、30  ……

即:3×1、3×2、3×3 ……

再按题目要求划去在报数中出去的人,第2次报数后留下的人为:

9、18、27、36  ……

即:32×1、32×2、32×3 ……

[1] [2]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      100%(1)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论