1.5有理数的乘方 教案设计
有理数的乘方(一)
教学目标:
1、理解有理数乘方的意义;
2、掌握有理数乘方运算;
3、能确定有理数加、减、乘、除、乘方混合运算的顺序;
4、会进行有理数的混合运算;
5、培养并提高正确迅速的运算能力.
教学重点:有理数乘方的意义;运算顺序的确定和性质符号的处理.
教学难点:幂、底数、指数的概念及其表示;有理数的混合运算.
教学过程:
一、学前准备
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包.他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
学生交流讨论并计算,如果把整块面包看成整体“1”,那第十天他将吃到面包 .
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次后,就可以拉出32根面条?
二、合作探究
我们学过正方形的面积公式,知道边长为a的正方形面积为a•a;我们还知道棱长为a的正方体的体积是a•a•a.
a•a可简记为a2,读作a的平方(或二次方).
a•a•a可简记为a3,读作a的立方(或三次方).
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
接下来引入乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂;在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂;当指数是1时,通常省略不写.
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论