第二章 “一元一次方程”简介

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-10-07 20:23:17
 
  三、几个值得关注的问题
  1.关注在前面学段的基础上发展,做好从算术到代数的过渡
  本章第2.1节从一个实际问题(行程问题)开始讨论,在引出方程后提出“从算式到方程是数学的进步”。算式与方程表现了算术与代数解决问题的两种不同方法。用算术方法解实际问题是前面学段中学生已经学习过的内容,它对于提高分析问题中数量关系的能力有着打基础的作用。算式表示一个计算过程,用算术方法解实际问题时,算式中只含已知数而不包含未知数;而代数中设未知数或列方程时首先需要用式子表示问题中有关的量,这些式子实际上也是算式,只是其中可能含有字母(未知数)。方程是根据问题中等量关系列出的等式,其中既含有已知数,又含有未知数,这是代数方程与算术算式的区别之一。由于方程中可以用未知数与已知数一起表示相关的量,所以方程的应用更为方便。这正是用字母表示数带来的好处。
 
  从课程标准看,在前面学段中已经有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,即对于方程的认识已经历了入门阶段,具备了一定的感性认识基础,这些基本的、朴素的认识为进一步学习方程奠定了基础。本章的内容是在前面的学习基础上的进一步发展,即对一元一次方程作更系统更深入的讨论,所涉及的实际问题要比以前学习的问题复杂些,更强调模型化思想的渗透;对方程解法的讨论要更注重算理,更强调创设未知向已知转化的条件以及解法中程序化的思想。
 
  了解以上的联系与区别,有助于在本章教学中注意到应在哪些地方使学生得到新的提高。
 

  2.关注方程与实际问题的联系,体现数学建模思想
 

 
  我们生活在一个丰富多彩的世界,其中存在大量问题涉及数量关系的分析,这为学习“一元一次方程”提供了大量的现实素材。在本章教科书中,实际问题情境贯穿于始终,对方程解法的讨论也是在解决实际问题的过程中进行的,“列方程”在本章中占有突出地位,全章教科书按照讨论实际问题的线索而展开。在本章的教学和学习中,要充分注意方程的现实背景,通过大量丰富的实际问题,反映出方程来自实际又服务于实际,加强对于方程是解决现实问题的一种重要数学模型的认识。鉴于本章的学习对象是七年级学生,教科书的叙述力求通俗易懂,在正文中避免过多直接使用“数学模型”等词,而是通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想。
 
  设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的相等关系是设未知数、列方程的基础。在本章的教学和学习中,可以从多角度进行思考,借助图形、表格、式子等进行分析,寻找等量关系,检验方程的合理性。教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用一元一次方程分析和解决它们。
 
  利用一元一次方程解决问题的基本过程(见前面的图),在本章中反复出现并且逐步细化,这有助于从整体上认识一元一次方程与实际问题的关系,请注意在教学中不断强化对它的认识。
 
  3.关注方程这条主线,带动相关预备知识的学习
 
  从数学学科内部来看,整式及其运算(加减法)是一元一次方程的预备知识;而从应用的角度来看,一元一次方程要比整式用得更普遍、更直接。本套教科书不像过去许多数学教科书那样先安排整式,然后再安排一元一次方程,而是将与一元一次方程相关的整式知识分散于本章之中,对它们采取“够用即可”的处理方式,回避了一些概念(代数式、同类项等),结合方程的讨论通过例子解释了一些相关运算(合并含未知数的项、去括号等),而将对整式系统深入的讨论留待后面章节完成。前面已经说过这样处理的主要目的是为了突出重点,适当精简整合教学内容,加强应用意识。这样处理与“先专门安排整式预备知识,后安排方程”的做法各有优缺点,请在教学实践中对它们进行比较和检验,以便进一步寻求更符合教学实际的处理方案。
 
  在本章的教学中,希望能够了解教科书的上述变化及其用意,时刻关注教学重点,注意抓住方程这条主线,削枝强干,突出围绕一元一次方程的讨论,带动有关预备知识的学习。特别要把握好本章中所含有的整式知识的深度和广度,不作过多的补充和引申,以免喧宾夺主冲淡主题。
 
  4.关注培养学习的主动性和探究性
 
  课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性。本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣。在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法。
 
  在本章的教科书中,安排了许多可提供学生主动进行探究的内容,其中既涉及列方程又涉及解方程,例如2.4节“再探实际问题与一元一次方程”就是为提高分析和解决问题的能力而安排的探究性内容,本章的“数学活动”及“拓广探索”栏目下的习题等也设置了很多探究性问题,采用什么方式进行这些内容的教学是需要关注的问题。具体教学方式可能会因时因地因人而易,但是各种方式都应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经过自己的努力来克服困难的过程中体验如何进行探究活动,而不要替代他们思考,不要过早给出答案。应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。对于解方程过程中较复杂的计算,可以提倡学生运用计算机(器)等计算工具采用灵活方式完成。
 
  5.关注数学思想方法的教学和学习
 
  前面已经说过,本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程模型这一过程中蕴涵的模型化(包括符号化)的思想;另一个是解方程的过程中蕴涵的化归思想。在本章的教学和学习中,不能仅仅着眼于个别题目的具体解题过程,而应关注对以上思想方法的渗透和领会,从整体上认识问题的本质。
 
  数学思想方法是通过数学知识的载体来体现的,对于它们的认识需要一个较长的过程,既需要教科书的渗透反映,也需要教师的点拨,最终还需要学生自身的感受和理解。数学思想方法对一个人的影响往往要大于具体的数学知识,例如对解方程的本质有比较透彻的认识,就容易主动地探究具体方程的解法,这远比死记硬背方程的解法步骤的效果要好。因此,我们需要关注数学思想方法的教学和学习,希望教师在如何深入浅出地进行这方面的教学上不断探索。

上一页  [1] [2] [3] [4]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论