第一章 “有理数”简介
课程教材研究所 薛彬 本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。本章主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。
本章教学时间约需21课时,具体安排如下:
1.1正数和负数约2课时
1.2有理数约5课时
1.3有理数的加减法约4课时
1.4有理数的乘除法约4课时
1.5有理数的乘方约4课时
数学活动
1.3有理数的加减法约4课时
1.4有理数的乘除法约4课时
1.5有理数的乘方约4课时
数学活动
小结约2课时
一、教科书内容和课程学习目标
本章知识结构框图如下:

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。
引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。
引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。
引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。两个负数比较大小,有理数运算也要借助绝对值这个概念。
本章的重点是有理数的运算。加法与乘法都是在介绍运算法则——着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。
减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。
乘方是几个相同因数的乘积,也就可以利用乘法运算。科学记数法与乘方有关,因而可进一步加以介绍。近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。
为了加强与相关运算的联系,利用计算器计算分散安排在相关内容中。例如,教科书用计算器计算一些负数的乘方,进而探求负数的乘方的符号规律。学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。简单的有理数运算仍需要学生熟练地用笔算完成。
本章的教学要求如下:
1.通过实际例子,感受引入负数的必要性。会用正负数表示实际问题中的数量。
2.理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。通过上述内容的学习,体会从数与形两方面考虑问题的方法。
3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。
理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主)。
通过实例进一步感受大数,并能用科学记数法表示。了解近似数与有效数字的概念。
二、本章编写特点
1.加强与实际的联系
(1)从实际出发引入有关内容
章前引言注意与实际的联系,用温度、净胜球、零件生产、纳米的实例引入本章的内容。通过第一节开头回顾学过的数的产生和发展的过程,说明数的产生和发展离不开生活和生产的需要。
有理数的有关概念注意从实际引入。例如,数轴是通过描述位置的问题引出的,并让学生通过温度计加深对数轴的认识。又如,通过一个“观察”,栏目,给出未来一周天气预报,提出问题“你能将图中给出的各个温度按从低到高的顺序排列吗?”,从而引出有理数比较大小的内容。
从实际出发引入有理数的运算。例如,通过足球比赛中,计算章前引言中红队和白队的净胜净胜球数,出现
4+(-2),1+(-1),
引出正数与负数的加法.又如,通过某地一天的气温是-3℃~4℃,这天的温差(℃)就是4-(-3),引出正数与负数的减法.
(2)运用有关内容解决实际问题
教科书通过引言中温度、净胜球、加工允许误差的实例引出负数后,进一步介绍正负数在实际中的应用。例如,在地形图上表示某地的高度要用到正负数。又如,银行储蓄中存入用正数表示,支出用负数表示。再如,用正负数描述体重、出口总额的增减变化。通过这些例子,让学生进一步体会引入负数在解决实际问题中的作用。
学过有理数的有关运算后,即可运用相应运算解决实际问题。例如,运用有理数加法解决有关求和的实际问题,运用有理数的乘法解决气温变化的问题,运用有理数的混合运算解决公司盈亏问题。
让学生通过“数学活动”将本章内容运用于实际。例如,让学生运用本章有关内容掌握家庭的生活收支情况。又如,让学生运用本章有关内容描述一周的气温情况。再如,让学生收集实例,体会科学记数法和近似数等在实际中的应用。
2.运用数形结合的方法
学习本章的一个关键,就是利用数轴的直观性,帮助学生理解相反数与绝对值的概念,掌握比较有理数大小的方法,认识有理数的运算法则。
从数轴上看,有许多对关于原点对称的点,从而引出相反数加以描述。除了关于原点对称的点以外,数轴上不同的点到原点的距离不同,这又可以引入绝对值加以描述。利用数轴规定有理数的顺序,既直观又涵盖了有理数比较大小的各种情况。
利用数轴分析物体运动的实例,可以非常直观地获得物体两次运动的结果,从而引出有理数加法的运算法则。
教科书还利用数轴、通过蜗牛运动的例子引出有理数乘法法则。在前两个学段,学生对速度×时间=路程已经熟悉:如果知道速度,时间,就可以用速度×时间求出路程,如果再知道运动的起点,运动的方向,就可以用速度×时间确定运动一段时间后的位置。在此基础上,可进一步指出,如果把时间区分为现在前与现在后,速度×时间就表示一段时间前与一段时间后的位置。另一方面,这个位置借助数轴容易确定,从而写出相应的算式。可以看到,有了数轴,上述内容就能够清楚地呈现。
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论