第三单元 比例 单元教案设计
D× X×8=Y A×H× =S
二对比练习
上面各题学生作出了判断,并说明理由后,师指出:比值一定,也就是商一定,成正比例。因为除法是乘法的逆运算,除法运算的结果商相当于乘法算式中的一个因数,即Y=KX,K一定。所以判断成正、反比例的方法,可以统一用乘法关系式来判断。把题目中的三种量列成乘法算式。如果一个因数一定,另一个因数和积成正比例,如果是积一定两个因数成反比例。
1.利用乘法关系式判断:
(1)每本书的单价×本数=总价 速度×时间=路程
一定 ( )比例 ( )比例 一定
(2)3X=Y Y和X( )比例
(3) Y和X( )比例
2.引导学生总结判断规律:一列(列出乘法算式)、二找(找出定量)、三判断(积一定,则一个因数另一个因数成反比例,其他情况则成正比例)。
三深化练习
1.利用判断规律,判断下面各题中的两种量成不成比例?如果成比例,成什么比例?为什么?
(1) 房屋面积一定,铺砖块数和每块砖的面积。
(2) 差一定,被减数和减数。
(3) 圆的半径和周长。
2.从汽油的千克数,行的千米数和行1千米的耗油量这三种量中,分别说出谁一定时,谁和谁成什么比例?
3.从每千克花生榨油千克数,花生的千克数和花生油的千克数这三种量中,分别说出谁一定时,谁和谁成什么比例?
教学内容:比例的应用
复习目标:
通过复习,使学生能正确、熟练地运用正、反比例知识解决有关实际问题,增强学生的应用意识,提高学生的实践能力。
复习过程:
一复习比例尺
1.什么是比例尺?
板书:图上距离:实际距离=比例尺
或
2.说一说下面各比例尺的具体意义。
(1)比例尺1:3000000
0
25
50㎞
(2)比例尺
(3)比例尺20:1
3.你能把数值比例尺和线段比例进行改写吗?
如:1:3000000改成线段比例尺。
0
25
50㎞
改成数值比例尺。
3.填空。
比例尺
图上距离
实际距离
12㎝
600㎞
1:50000
1.2㎞
1:60000000
15㎝
过程要求:
(1) 学生独立计算,求出各题结果。
(2) 汇报,填空。
(3) 说一说你是怎么做的,计算过程中要注意什么?
二复习用比例解决问题
1.说一说运用比例解决问题的步骤。
通过回顾与交流,学生概括出解决答步骤。如:
(1) 找出相关联的两种量。
(2) 判断两种量成什么比例。
(3) 用等量关系表示数量关系。
(4) 解设,并解比例
(5) 检验。
2.完成课文“整理与复习”第4题。
三巩固练习
完成课文练习十第4、5题。
教学内容:深化练习
练习目标:
通过正、反比例应用题的复习,使学生能正确、熟练地解答正、反比例应用题,提高解答应用题的能力。
练习过程
一、解题思路训练
一辆汽车从甲地开往乙地,3小时行了150千米,用同样的速度行驶,
1、“又行了120千米到达乙地。”根据以上条件判断哪两种量成什么比例?列出关系式。再出示 ,(1)如果X指又行的小时数,X应与谁对应?括号里应填什么数?(2)如果X指一共行的小时数,X应与谁对应?括号里填什么数?
2、“一共行了5小时到达乙地。”(1)出示 ,问:如果这样列等式,X表示什么?(2) ,问这样列式,X表示什么?
二、正、反比例应用练习
1、用比例解答下列应用题。
(1)工程队安装一条水管。计划每天安装90米,20天完成。实际只用了15天就完成了。实际每天安装多少米?
(2)工程队安装一条水管。20天安装了90米,照这样计算,15天能安装多少米?
全班练习,指名个别板演,后集体订正。
题(1)因为每天工作量×工作时间=工作总量(一定)
所以每天工作量和工作时间成反比例。
解:设实际每天安装X米。
15X=90×20
X=120
答:略
题(2)因为工作总量÷工作时间=每天工作量(一定)
所以工作总量和工作时间成正比例。
解:设15天能安装X米。
20X=90×15
X=67.5
答:略
2.小结对比上面的第(1)、(2)题。
3.总结解答正、反比例应用题的解题思路和解题步骤。
解题思路:正反比例应用题的解题思路是一样的。找出题中三种量,写出数量关系式,判断谁一定,谁变化。根据一定的量判断两种变化的量成什么比例或不成比例。
解题步骤:
(1) 认真审题,分析数量关系,判断哪两种量成什么比例。
(2) 设未知数X,注明单位名称。
(3) 根据正、反比例的意义列出等式,并解答。
(4) 检验,并写答句。
4.上面的第(1)、(2)题还有其他解法式吗?生答师板书。
(1)90×20÷15 (2)90÷20×15 90× 90÷





