第三单元 比例 单元教案设计
(3) 0
50
100㎞
认识线段比例尺。
①说明:“比例尺 ”是线段比例尺。
0
50
100㎞
②“比例尺 ”表示图上距离1厘米相当于实际距离50千米。
(写出相应板书)
(4) 改写成数值比例尺。(例1)
① 你会把这个线段比例尺改成数值比例尺吗?
② 学生尝试改写,并与同学交流,最后师生共同改写。
板书:图上距离:实际距离
=1㎝:5000000㎝
=1:5000000
4.放大比例尺。
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。
(1) 出示课文中的“图纸”。
(2) 找到“比例尺2:1”。
(3) 比例尺2:1表示图上距离2厘米相应于实际距离1厘米。
板书:比例尺2 : 1
图上距离 实际距离
(4) 这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5.比例尺书写特征。
(1) 观察:比例尺1:100000000
比例尺1:5000000
比例尺2:1
(2) 看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
三巩固练习
1.做一做。
过程要求:
(1) 学生独立完成。(要求写出数值比例尺)
(2) 同学之间互相交流。
(3) 汇报交流结果。
2.完成课文练习八第1~3题。
教学内容:解决问题
教学目标:
1.使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2.使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
教学重点:求图上距离和实际距离。
教学难点:求实际距离。
教学过程:
一旧知铺垫
1. 什么叫做比例尺?
板书:图上距离:实际距离=比例尺
或
2.说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000
(2)比例尺80:1
0
20
40㎞
(3)比例尺
二探索新知
1.教学例2。
(1) 出示课文例题及插图。
(2) 说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝;
② 条幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3) 你认为可以用什么方法解决问题?
① 学生尝试解决问题。
② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③ 汇报解答情况。
方程解:
解:设地铁1号线的实际长度是X厘米。
根据
X=10×500000(问:根据什么?)
根据比例的基本性质。
X=5000000
5000000㎝=50㎞
答:略
算术解:
根据 ,得出:实际距离
10÷
=10×500000
=5000000(㎝)
5000000㎝=50㎞
答:略
2.教学例3。
(1) 出示例题,学生了解题目要求。
(2) 讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的距离;
③ 画出操场的平面图。
(3) 小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4) 汇报,交流。
① 小组派代表说明你的方案和结果。
② 选择合适的方案,展示结果,并说明解决方案
如:选择比例尺1:1000画图。
图上的长=80× =0.08m
0.08m=8㎝
图上的宽=60× =0.06m
0.06m=6㎝
操场平面图:
三巩固练习
1.完成课文“”做一做”
2. 完成课文练习八第4~10题。
教学内容:图形的放大与缩小
教学目标:
1.结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
2.能按一定的比,将一些简单图形进行放大或缩小。
教学重点:图形的放大与缩小。
教学难点:按一定的比把图形放大或缩小。
教学过程:
一揭示课题
1.你见过下面这些现象吗?
出示课文插图。
问:这些现象中,哪些是把物体放大?哪些是把物体缩小?
图1把物体缩小。
图2、3、4把物体放大。
2.今天,我们就一起来学习这一内容。
板书课题:物体的放大与缩小。
二、探索新知
1.教学例4。
(1)出示图形
要求:按2:1画出这个图形放大后的图形。
①“按2:1放大”是什么意思?
先让学生说出自己的理解,然后教师说明。
师:按2:1放大,也就是各边放大到原来的2倍。
②说一说放大后图形的边长。
原来的边长是3倍,放大后图形的边长是6倍。





