第三单元 比例 单元教案设计
2、能综合运用比例知识解决有关的实际问题,发展学生的实践能力。
教学重点:解比例。
教学难点:解比例的方法。
教学过程:
一旧知铺垫
1.什么叫做比例?
2.什么叫做比例的基本性质?
3.下面哪组中的两个比可以组成比例?你用什么方法检验?
9:10和3.6:4 1000:0.2和10:0.002
: 和 : 和
4.填一填.
(1) =
1.6×( )=( )×( )
(2)5: =2.4:1.6
5×( )=( )×( )
(3)8×0.1=1×
二探索新知
1.什么叫解比例?
(1)比例中共有几个项?有什么关系?
(2)如果已知比例中的任何三项,能不能求出这个比例中的另外一个未知项?
(3)说明什么叫做解比例。
板书:求比例中的未知项,叫做解比例。
2.教学例2。
(1)出示课文例题和情境图。
(2)根据题意,描述两个相等的比。
(3) 指出其中的未知项,说一说你想怎样解答。
(4) 学生独立思考,解决问题。
(5) 汇报解答情况。
板书:
解:设这座模型的高度为X米。
X:320=1:10
10X=320×1 (问:根据什么?)
X=
X=32
或者:
10X=320×1 (问:根据什么?)
X=
X=32
(6) 小结。
说一说你是怎样解比例的,解比例的关键是什么?
4.教学例3。
解比例 =
过程要求:
(1) 学生独立练习,求出未知项。
(2) 同学之间互相交流,发现问题,及时解决。
(3) 请一位学生上台板演。
解:1.5X=2.5×6
X=
X=10
4.做一做。
5.课堂小结。
(1)说一说解比例的方法。
(2)你有什么不懂之处,与同学交流。
三巩固练习。
完成课文练习六的第7~13题。
作业:
课后记:
2.正比例和反比例的意义
教学内容:成正比例的量
教学目标:
1. 使学生理解正比例的意义,会正确判断成正比例的量。
2. 使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
(1) 班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2) 送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3) 上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4) 排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二探索新知
1.教学例1
(1) 出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝
2
4
6
8
10
12
体积/㎝3
50
100
150
200
250
300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书:
教师:体积与高度的比值一定。
(2) 说明正比例的意义。
① 在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
② 学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一,两种相关联的量;
第二,其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。
第三,两个量的比值一定。
(3) 用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(4) 想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2.教学例2。
(1) 出示表格(见书)
(2) 依据下表中的数据描点。(见书)
(3) 从图中你发现了什么?
这些点都在同一条直线上。
(4) 看图回答问题。
① 如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
② 体积是225㎝3的水,杯里水面高度是多少?





