两角和与差的三角函数,解斜三角形·余弦定理·教案
解 延长CD至E,使DE=CD.
因为CD=DE,AD=DB,所以四边形ACBE是平行四边形.所以
BE=AC=8,∠ACB+∠CBE=180°.
在△ACB中,CB=7,AC=8,AB=9,由余弦定理可得
在△CBE中,
这两种解法都是两次用到余弦定理,可见掌握余弦定理是十分必要的.
七、总结
本节课我们研究了三角形的一种边角关系,即余弦定理,它的证明我们可以用解析法.它的形式有两种,一种是用两边及夹角的余弦表示第三边,另一种是三边表示角.
余弦定理适用于各种三角形,当一个三角形的一个内角为90°时,余弦定理就自然化为勾股定理或锐角三角函数.
余弦定理的作用如同它的两种形式,一是已知两边及夹角解决第三边问题;另一个是已知三边解决三内角问题.注意在(0,π)范围内余弦值和角的一一对应性.若cosA>0
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





