两角和与差的三角函数,解斜三角形·余弦定理·教案
(π-C).
所以AB2=AD2+BD2化为
c2=(AC+CD)2+BD2
=[b+acos(π-C)]2+[asin(π-C)]2
=b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)
=b2+2abcos(π-C)+a2.
因为cos(π-C)=-cosC,所以c2=b2+a2-2abcosC.
这里∠C为钝角,cosC为负值,-2abcosC为正值,所以b2+a2-2abcosC>a2
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





